Primary ideals and modules

Def: A proper ideal $Q \nsubseteq R$ is primary if $x y \in I$ implies $x \in Q$ or $y^{n} \in Q$ for some $n \in \mathbb{N}$. A primary ideal Q is $\underline{P-p r i m a r y ~ i f ~} \sqrt{Q}=P$.

So P prime $\Rightarrow P$ is primary.

Claim: If Q is primary, then \sqrt{Q} is prime.

Pf: Suppose $a b \in \sqrt{Q}$. Then $(a b)^{n} \in Q$, so $a^{n} \in Q$ and thus $a \in \sqrt{Q}$ or $\left(b^{n}\right)^{m} \in Q$, in which case $b \in Q$.

The converse doesn't hold:

Ex: Let $Q=\left(x^{2}, x y\right) \subseteq \mathbb{C}[x, y, z]$.
Then $\left(x^{2}, x y\right) \subseteq(x)$ which is prime, so
$\sqrt{Q} \subseteq(x)$. But $x^{2} \in Q$ so $(x) \subseteq \sqrt{Q}$. Thus $\sqrt{Q}=(x)$ which is prime.

However, Q is not primary: $x \notin Q$ and $y^{n} \notin Q$ for any n.

Ex: In π, the primary ideals are those of the form $\left(p^{n}\right)$ for p prime.

This generalizes to any PID, as we'll see later. e-g.

$$
\left(x^{2}-x^{4}\right)=\left(x^{2}\right) \cap(1-x) \cap(1+x) \text { in } k[x]
$$

Our goal is to prove the following:

Theorem (Primary decomposition): Let $J \subseteq R$ be an ideal, and R Noetherian. Then \exists primary Q_{1}, \ldots, Q_{n} such that

$$
J=Q_{1} \cap Q_{2} \cap \ldots \cap Q_{n}
$$

Moreover, we can choose the Q_{i} to have distinct radicals and none contained in another, in which case the decomposition is unique.

However, we can actually prove something more general about modules, by applying theorems from last section. We first generalize the definition to modules:

Def: A submodule $N \subseteq M$ is primary if $\operatorname{Ass}(M / N)$ has just one element P. In this case, we say N is P-primary.
M is coprimary if $O \subseteq M$ is primary.

That is: $N \subseteq M$ primary $\Longleftrightarrow M / N$ is coprimany.

We will soon see this is equivalent to our definition in the case of $I \subseteq R$ an ideal.

For the remainder of this section, assume R is Noetherian and M a finitely-generated R-module.
lemma: If $P \subseteq R$ is prime, and $N_{1}, \ldots, N_{t} \subseteq M$ all P-primary in M, then $\bigcap_{i} N_{i}$ is P-primary.

Pf: By induction, we can assume $t=2$.

Then $M / N_{1} \cap N_{2} \hookrightarrow M / N_{1} \oplus M / N_{2}$, so recalling how associated primes behave in short exact sequences, we have

$$
\operatorname{Ass}\left(M / N_{1} \cap N_{2}\right) \subseteq \operatorname{Ass}\left(M / N_{1}\right) \oplus \operatorname{Ass}\left(M / N_{2}\right) \subseteq \operatorname{Ass}\left(M / N_{1}\right) \cup A \operatorname{ss}\left(M / N_{2}\right)=\{p\}
$$

(using the SES $\quad 0 \rightarrow M / N_{1} \rightarrow M / N_{1} \oplus M / N_{2} \rightarrow M / N_{2} \rightarrow 0$).

Since $\operatorname{Ass}\left(M / N_{1} \cap N_{2}\right) \neq \phi, \quad N_{1} \cap N_{2}$ is P-primary.

The big theorem about associated primes gives us the following
characterization of coprimary modules:

Prop: Let $P \subseteq R$ be prime. The following are equivalent:
a.) M is P-soprimary.
b.) P is minimal over $A n_{n} M$ and every elf not in P is a nonzerodivigor on M. (ie. $u \notin P$ and $u m=0 \Rightarrow m=0$)
c.) A power of P annihilates M, and every element not in P is a NZD on M.

Note: If $M=R / I, P=\sqrt{I}$, then c.) says that a power of P is in I (which is always true for R Noeth), and if $a \notin \sqrt{I}$, then $a b \notin I$ for any $b \neq I$.

This is equivalent to $a b \in I \Rightarrow a \in \sqrt{I}$ or $b \in I$, so the definition of primary for modules agrees with our def'n for ideals.

Pf of prop:
a.) \Rightarrow b.): P is the only associated prime of M, so it must be minimal over $A_{\text {nu }} M$, and $P=\left\{\begin{array}{c}\text { zero divisors } \\ \text { on }\end{array}\right\} \cup\{0\}$.
b) \Rightarrow c.): We just need to show some power of P is in Ann. First we show it is true when we localize:

Let $P^{\prime}=P R_{p}$. Then P^{\prime} is minimal over (Ann) R_{p}, which is contained in Ann M_{p}. If $\frac{r}{u} \in \operatorname{Ann} M_{p}$, then for $m \in M, \quad \frac{r}{1} m=0 \Rightarrow r v m=0$ for some $v \notin P \Rightarrow r v \in A_{n n} M \Rightarrow r \in\left(A_{n} n M\right) R_{p}$.

Thus, P^{\prime} is minimal over Ann Mp.

$$
\Rightarrow \quad P^{\prime}=\sqrt{A_{n n} M_{p}}
$$

\Rightarrow If $P^{\prime}=\left(x_{1}, \ldots, x_{m}\right)$ then $\exists k_{i}$ s.t. $x_{i}^{k_{i}} \in \operatorname{Ann} M_{p}$.

$$
\Rightarrow \exists n \gg 0 \text { s.t. }\left(p^{\prime}\right)^{n} \subseteq A_{n n} M_{p}
$$

Now let $r \in P^{n}, m \in M$. Then $\frac{r m}{1}=0$, so $\exists u \notin P$ sit. urm=O. But u is a NZD on M, so $r m=0$. Thus, $P^{n} \subseteq A_{n n} M$.

$$
\text { (.) } \Rightarrow \text { a.) }: \quad P^{n} \subseteq A_{n n} M \text {, so } P \subseteq \sqrt{A_{n n} M}=\bigcap_{P_{i} A_{n n} M} P_{i}
$$

By the second hypothesis, Ann $M \subseteq P$, so P must be minimal among primes containing Ann, so $P \in A_{s} M$.

The efts outside P are NZD on M, so all associated primes are in $P \Rightarrow M$ is P-coprimany. D

Note: Part b) tells us that M is P-coprimary $\Longleftrightarrow P$ is
minimal over Ann M and M injects into M_{p}

So if M is any module and P is minimal over Ann, then set $M^{\prime}=\operatorname{ker}\left(M \rightarrow M_{p}\right)$.
then $\quad 0 \rightarrow M^{\prime} \rightarrow M \rightarrow M_{p}$ is exact, so
$0 \rightarrow M_{p}^{\prime} \rightarrow M_{p} \stackrel{\cong}{\longrightarrow} M_{p}$ is as well.

Thus, M / M^{\prime} injects into

$$
M_{p}=M_{p} / M_{p}^{\prime}=\left(M / M^{\prime}\right)_{p}
$$ so M^{\prime} is P-primary.

Ex: Let $I=\left(x^{2} y\right) \subseteq k[x, y]$, and $M=k[x, y] / I$.
Then the minimal primes over $A n n M=I$ are (x) and (y).
$\operatorname{ker}\left(M \rightarrow M_{(x)}\right)=\{m \in M \mid v m=0$ for some $v \notin(x)\}=\left(x^{2}\right)$

$$
\operatorname{ker}\left(M \rightarrow M_{(y)}\right)=(y)
$$

Notice: $\quad I=\left(x^{2}\right) \cap(y)$.
However...
Ex: $\quad I=\left(x^{2}, x y\right) \subseteq k[x, y], \quad M=k[x, y] / I$. The only minimal prime over I is (x), and

$$
\operatorname{ker}\left(M \rightarrow M_{(x)}\right)=(x)
$$

But $I \neq(x)$.

In the next section, we describe exactly how to find a primary decomposition.

